По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48

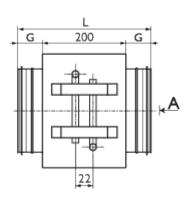
Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

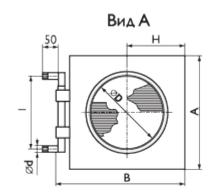
Эл. почта: pba@nt-rt.ru || Сайт: http://polarbear.nt-rt.ru

Канальные водяные теплообменники для круглых воздуховодов РВАНС

Канальные теплообменники РВАНС предназначены для подогрева воздуха в воздуховодах круглого сечения. Корпус выполнен из оцинкованной стали, теплообменник изготовлен из пакета медных трубок с алюминиевым оребрением. Шаг оребрения составляет 2,5 мм. Максимальные рабочие температура/давление составляют 150°С/1,0 МПа или 100°С/1,6 МПа. Все калориферы проверяются на герметичность опрессовкой под давлением 3,3 МПа.

Установка


Канальные теплообменники могут устанавливаться в любом положении, позволяющем отвод воздуха из гидравлического контура теплообменника. При использовании в качестве теплоносителя воды теплообменники необходимо устанавливать в помещении с положительной температурой. Рекомендуемое расстояние от теплообменника до изгиба воздуховода,


заслонки и т. п. должно быть не менее двух диаметров присоединительного патрубка теплообменника.

Защита от замораживания

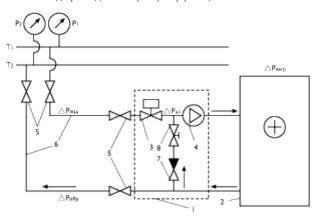
Во избежание замораживания теплообменника необходимо предусмотреть комплекс мероприятий:

- ж Обеспечение скорости протекания воды не ниже минимально допустимой;
- × Защиту по температуре воздуха и обратной воды;
- ¤ Отключение вентилятора, закрытие воздушной заслонки и открытие регулирующего вентиля при срабатывании защиты.

Технические характеристики

Тип нагревателя	Воздух, Твхода= -28°C	Мощн., кВт	вода, 1=95//0°C	Внутр. объм,	Размеры, мм	Вес, кг	
-----------------	--------------------------	---------------	-----------------	-----------------	-------------	------------	--

	Расход, м3/ч	Сопр., Па		Расход, л/с	Сопр., кПа	дм3	ØD	A	В	L	G	н	ı	Ød*	
DDAUG 160 2 2 FM	450	25	7,9	0,06	13,8	0.25	0,35 160	0 230	255	200	40	143	187	17	4.1
PBAHC 160-2-2,5M	650	49	9,9	0,08	21,4	0,35			355	280	40			1/2"	4,1
DDALIC 200 2 2 5M	550	25	11,5	0,11	8,0	0.57	0,56 200	200 280	275	280	40	168	227	1/ 11	г 1
PBAHC 200-2-2,5M	800	49	14,5	0,14	12,3	0,56			375		40		237	1/2"	5,1
DDALIC 250 2 2 5M	650	24	13,7	0,13	12,4	0.74	0,64 250	250 305	400	220	60	180	262	1/2"	7,5
PBAHC 250-2-2,5M	950	48	17,5	0,17	19,1	0,64			400	320					
DDALIC 245 2 2 5M	900	25	18,8	0,18	9,9	0.07	215	255	450	320		205	312	1/ 11	9,7
PBAHC 315-2-2,5M	1300	49	23,7	0,23	15,1	0,86	0,86 315	15 355			60			1/2"	
DDALIC 400 2 2 5M	1150	24	24,2	0,24	9,8	1.00	1,09 400	420	F2F	240	70	242	387]	1/ 11	13,0
PBAHC 400-2-2,5M	1700	49	30,9	0,30	15,4	1,09		430	525	340	70	242		1/2"	


^{*} Трубная резьба.

Примечание: Приведенные параметры рассчитаны для температуры входящего воздуха Т=-28°С.

Для выбора модели и определения технических параметров теплообменника (охладителя, испарителя) рекомендуем использовать программу подбора или обратиться к специалистам компании.

Рекомендуемые схемы обвязки

С двухходовым регулирующим вентилем

 $\mathsf{T1}$ и $\mathsf{T2}$ - подающий и обратный трубопроводы сети теплоснабжения;

- 1 узел обвязки;
- 2 теплообменник водяной, **ДРнагр** гидравлическое сопротивление теплообменника;
- 3 регулирующий клапан, ΔP кл потери давления в клапане (зависят от типоразмера выбираемого клапана);
- 4 циркуляционный насос (обеспечивает требуемую циркуляцию для предотвращения замерзания воды в трубках теплообменника);

С трехходовым регулирующим вентилем на разделение потоков

Р

ДРыгр

ДРыгр

ДРыгр

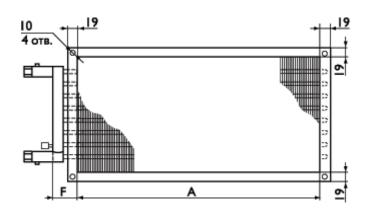
5 - запорные вентили;

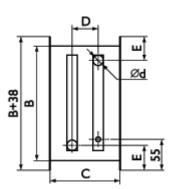
△Рпол

- 6 подающий и обратный трубопроводы от сети теплоснабжения к теплообменнику, Δ Рпод и Δ Робр соответственно потери давления в них;
- 7 обратный клапан;
- 8 балансировочный вентиль;
- 9 грязевой фильтр.

Канальные водяные теплообменники для прямоугольных воздуховодов PBAS

Канальные теплообменники PBAS предназначены для подогрева воздуха в воздуховодах прямоугольного сечения. Корпус выполнен из оцинкованной стали, теплообменник изготовлен из пакета медных трубок с алюминиевым оребрением. Шаг оребрения составляет 2,5 мм. На выходном коллекторе предусмотрен патрубок для установки погружного датчика системы защиты от замерзания (1/4"). Максимальные рабочие температура/давление составляют 150°С/1,0 МПа или 100°С/1,6 МПа. Все теплообменники проверяются на герметичность опрессовкой под давлением 3,3 МПа.


Установка

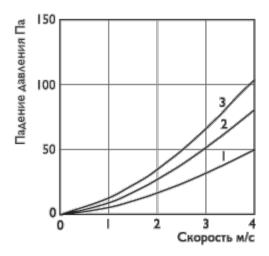

Канальные теплообменники могут устанавливаться в любом положении, позволяющем отвод воздуха из гидравлического контура теплообменника. При использовании в качестве теплоносителя воды теплообменники необходимо устанавливать в помещении с положительной температурой. Рекомендуемое расстояние до изгиба воздуховода, заслонки, и т. п. должно быть не менее диагонального размера теплообменника.

Защита от замораживания

Во избежание замораживания теплообменника необходимо предусмотреть комплекс мероприятий:

- ж Обеспечение скорости протекания воды не ниже минимально допустимой;
- × Защиту по температуре воздуха и обратной воды;
- ¤ Отключение вентилятора, закрытие воздушной заслонки и открытие регулирующего вентиля при срабатывании защиты.

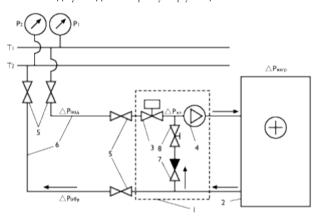
Технические характеристики


Модель	Расход	Мошн.		Вода, T=95/70°C		Размеры, мм							Вес,
	воздуха, м³/ч	кВт	Расход, л/с	Сопр., Па	объм, дм3	A	В	С	D	E	F	Ød*	кг
DDAC 400×200 2 2 5	600	12,4	0,12	8,4	0.40	400		120	22	36	, F	1/	
PBAS 400x200-2-2,5	900	16,0	0,16	13,4	0,60	400	200	130	33	36	65	1/2"	5,5
DDAC 400-200 0 0 5	600	17,2	0,17	7,8	0.05	400 200	200	120	43	36	65	1/2"	()
PBAS 400x200-3-2,5	900	22,6	0,22	12,9	0,85		200	130	43	30			6,2
DDAC 400×200 4 2 5	600	20,7	0,20	13,7	1.07	400	200	120	/ F	36	, F	17	6,8
PBAS 400x200-4-2,5	900	27,9	0,27	23,5	1,07	400	200	130	65	36	65	1/2"	
DDAC F00~2F0 2 2 5	900	18,1	0,18	3,1	0.03	F00	250	120	22	27	4 F	1/	7.1
PBAS 500x250-2-2,5	1350	23,4	0,23	4,9	0,93	500	250	130	33	36	65	1/2"	7,1
DDAC 500-250 0 0 5	900	25,9	0,25	7,4	1.00		250	120	43	36	65	1/2"	8,0
PBAS 500x250 -3-2,5	1350	34,2	0,34	12,3	1,28	500	250	130					

	900	31,3	0,31	12,3									
PBAS 500x250-4-2,5	1350	42,2	0,41	21,4	1,62	500	250	130	65	36	65	1/2"	8,9
	1100	22,0	0,22	2,5				400				2.4	
PBAS 500x300-2-2,5	1600	27,9	0,27	3,8	1,27	500	300	130	38	38	75	3/4"	8,0
DDAC 500-200 0 0 5	1100	31,5	0,31	6,2	1 (0	F00	200	120	4.2	20	7.5	27	0.0
PBAS 500x300-3-2,5	1600	40,7	0,40	9,8	1,68	500	300	130	43	38	75	3/4"	9,2
P BAS 500x300 -4-2.5	1100	38,1	0,37	10,7	2.00	E00	200	120	4 E	20	75	3/4"	10.2
PBAS 500X300-4-2,5	1600	50,2	0,49	17,6	2,09	500	300	130	65	38	75	94"	10,3
PBAS 600x300-2-2,5	1300	26,7	0,26	3,8	1,49	600	300	130	38	38	75	3/4"	8,8
PBAS 600X300-2-2,5	2000	34,9	0,34	6,2	1,49	000	300	130	30	30	/5	94"	0,0
PBAS 600x300-3-2,5	1300	37,9	0,37	9,4	1,98	600	300	120	43	38	75	3/4"	10,2
PBAS 600X300-3-2,5	2000	50,9	0,50	16,0	1,90	000	300	130	43	30	/5	94"	10,2
DDAS 600~200 4 2 E	1300	45,5	0,45	16,2	2 44	600	200	130	65	38	75	27	11 5
PBAS 600x300-4-2,5	2000	62,6	0,61	28,9	2,46	600	300	130	00	38	/5	3/4"	11,5
PBAS 600x350-2-2,5	1500	30,9	0,30	4,0	1,67	600	250	50 130	38	38	75	3/4"	9,8
PBAS 600X330-2-2,5	2300	40,4	0,40	6,5	1,67	000	350	130	30	30	/5	94"	9,0
PBAS 600x350-3-2,5	1500	43,9	0,43	9,8	2,24	600	300	00 130	43	38	75	3/4"	11,4
PBAS 600X330-3-2,5	2300	58,8	0,58	16,7	2,24	000	300	130	43	30	/5	94"	11,4
PBAS 600x350-4-2,5	1500	52,7	0,52	16,7	2,80	600	350	130	65	38	75	3/4"	12,9
PBAS 000X330-4-2,5	2300	72,3	0,71	29,8	2,80	000	330	130	03	30	75	94"	12,7
PBAS 700x400-2-2,5	2000	41,7	0,41	6,2	2,12	700	400	130	38	38	75	3/4"	12,5
FBAS 700X400-2-2,3	3000	53,9	0,53	9,9	2,12	700		130				94"	12,3
PBAS 700x400-3-2,5	2000	59,0	0,58	15,0	2,87	700	400	130	43	38	75	3/4"	14,8
1 DAS 7 00X 400 - 3 - 2,3	3000	77,9	0,77	25,1	2,07	700	400	130	43	30	/3	74	14,0
PBAS 700x400-4-2,5	2000	70,6	0,70	25,4	3,62	700	400	130	65	38	75	3/4"	17,1
1 2/3	3000	95,5	0,94	44,2	3,02	700	100	130	03	30	/ 3	74	17,1
PBAS 800x500-2-2,5	2900	58,7	0,58	3,5	3,30	800	500	130	42	42	85	1"	16,0
1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4300	75,2	0,74	5,5	3,30	000	300	130	72	72	00	<u>'</u>	10,0
PBAS 800x500-3-2,5	2900	83,8	0,82	8,1	4,36	800	500	130	43	42	85	1"	19,0
- 270 000,000 0 270	4300	109,7	1,08	13,4	1,00	000	000	100					17,0
PBAS 800x500-4-2,5	2900	100,9	0,99	13,5	5,43	800	500	130	65	42	85	1"	21,0
1 DAS 0000300-4-2,5	4300	135,0	1,33	23,1	3,43	000	300	130	03	72	03		21,0
PBAS 1000x500-2-2,5	3600	74,6	0,73	5,8	4,04	1000	500	130	38	42	85	1"	18,3
1 545 1000000 2 2,5	5400	96,3	0,95	9,3	4,04	1000	300	0 130	30	72	00		18,3
PBAS 1000x500-3-2,5	3600	105,7	1,04	13,7	5,36	1000	500	130	43	42	85	1"	22,2
. 2.10 1000000-0-2,0	5400	139,5	1,37	22,9	5,50	1300	0 500	0 130	43	42	00		,-
PBAS 1000x500-4-2,5	3600	126,6	1,24	22,8	6,68	1000	500	130	65	42	85	1"	26,1
. DAJ 1000AJ00-4-2,3	5400	171,1	1,68	39,8	0,00	1000	300	130		72	0.5		20,1

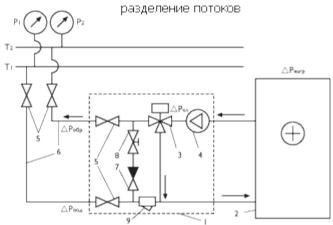
^{*} Трубная резьба.

Примечание: Приведенные параметры рассчитаны для температуры входящего воздуха T=-28 °C.


Для выбора модели и определения технических параметров теплообменника (охладителя, испарителя) рекомендуем использовать программу подбора или обратиться к специалистам компании.

- 1 2-х рядный теплообменник;
- 2 3-х рядный теплообменник;
- 3 4-х рядный теплообменник.

Рекомендуемые схемы обвязки


С двухходовым регулирующим вентилем

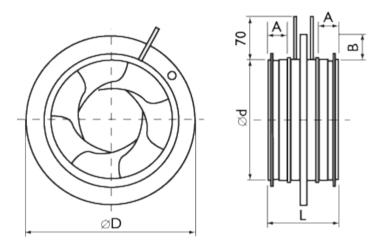
 $\mathsf{T1}$ и $\mathsf{T2}$ - подающий и обратный трубопроводы сети теплоснабжения;

- 1 узел обвязки;
- 2 теплообменник водяной, Δ Рнагр гидравлическое сопротивление теплообменника;
- 3 регулирующий клапан, ΔРкл потери давления в клапане (зависят от типоразмера выбираемого клапана);
- 4 циркуляционный насос (обеспечивает требуемую циркуляцию для предотвращения замерзания воды в трубках теплообменника);

С трехходовым регулирующим вентилем на

- 5 запорные вентили;
- 6 подающий и обратный трубопроводы от сети теплоснабжения к теплообменнику, Δ Рпод и Δ Робр соответственно потери давления в них;
- 7 обратный клапан;
- 8 балансировочный вентиль;
- 9 грязевой фильтр.

Ирисовые клапаны для круглых воздуховодов IRD

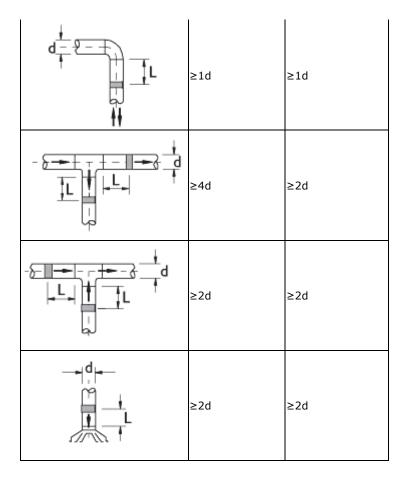


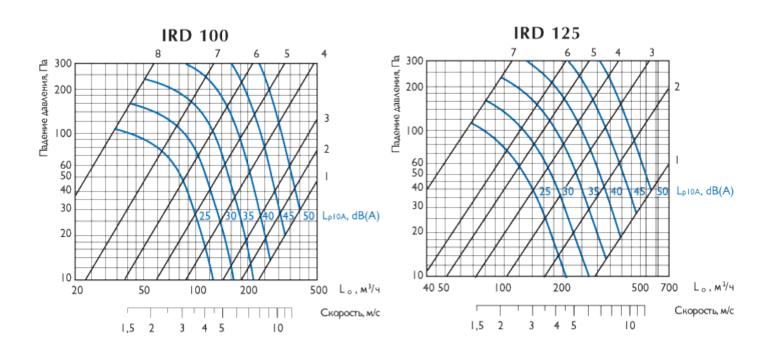
Ирисовые клапаны IRD предназначены для регулирования потока воздуха и измерения его расхода в воздушных каналах круглого сечения. Конструктивно клапаны IRD представляют собой ирисовую диафрагму, установленную в корпусе с круглыми присоединительными патрубками. На корпусе клапана нанесена легко читаемая шкала настройки и установлены соединительные штуцеры для измерения падения давления на нем. Выставив по рискам шкалы положение лепестков диафрагмы и измеряя с помощью дифференциального манометра падение давления на клапане, можно с большой точностью определить расход воздуха, проходящего через клапан. Управление воздушными клапанами IRD осуществляется вручную.

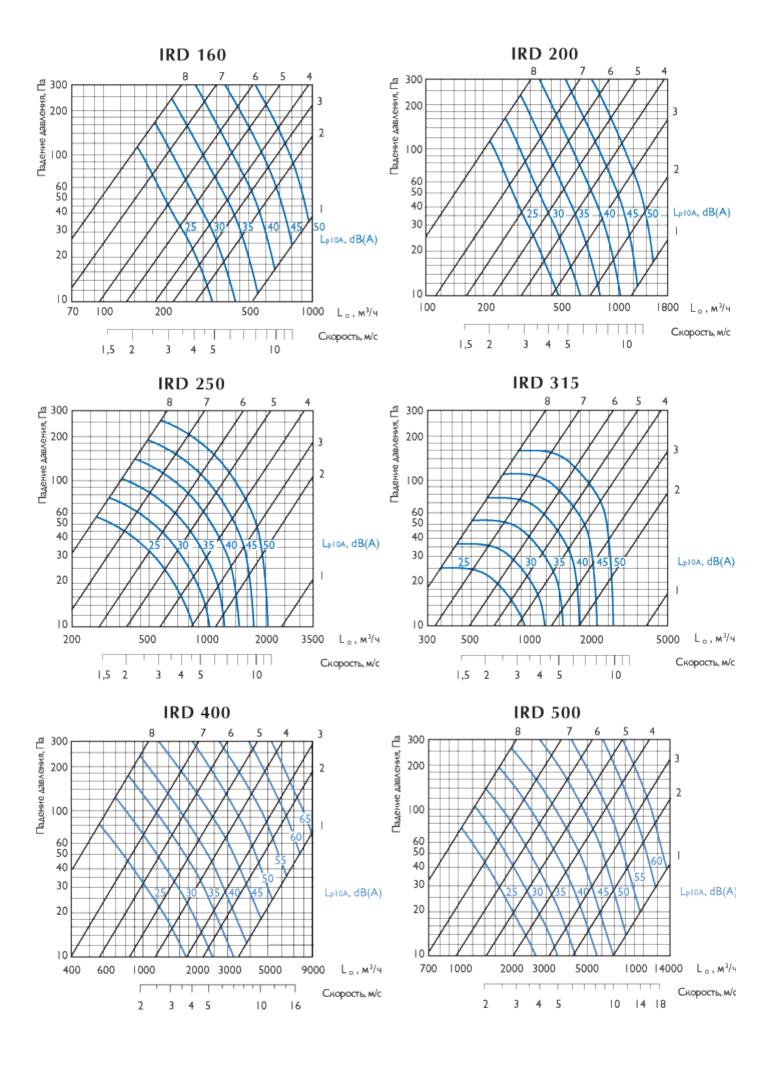
Клапаны сохраняют работоспособность и могут эксплуатироваться вне зависимости от пространственного положения их установки. Применение ирисовых клапанов позволяет значительно упростить процесс наладки

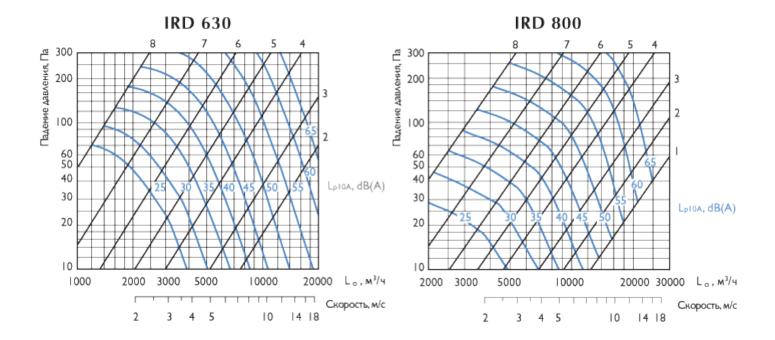
вентиляционных систем.

Корпус и регулирующие пластины клапанов изготавливаются из стального оцинкованного листа. Патрубки корпуса снабжены резиновыми уплотнениями, что обеспечивает герметичность соединения с воздуховодами.


Технические характеристики


Тип клапана	Ød	ØD	L, мм	А, мм	В, мм	Вес, кг
IRD 100	99	165	110	30	32	0,5
IRD 125	124	188	110	30	32	0,7
IRD 160	159	230	110	30	35	0,9
IRD 200	199	285	110	30	42	1,4
IRD 250	249	335	135	40	42	2,1
IRD 315	314	410	135	40	47	3,5
IRD 400	398	525	190	60	62	6,4
IRD 500	498	655	170	50	77	9,6
IRD 630	628	815	170	50	92	15,6
IRD 800	798	1015	270	100	107	25,0


Ирисовый клапан IRD обеспечивает проведение точных измерений во всех точках сети, включая точки вблизи


L _{min}	
m ² =±7%	m ² =±10%

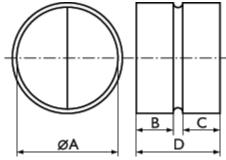
таких местных сопротивлений, как Тобразные тройники и отводы, повороты, изгибы, а также точки перед воздухораспределительными устройствами. В зависимости от требуемой точности измерений, ирисовый клапан должен быть установлен с учетом рекомендаций поминимальным расстояниям L_{\min} , приведенным в таблице.

Шумовые характеристики

Октавный уровень звуковой мощности определяется по формуле: $L_{woct} = L_{p10A} + K_{oct}$, где

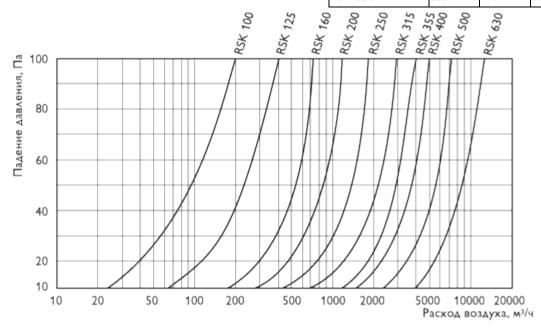
 L_{woct} - октавный уровень звуковой мощности;

 L_{p_10A} - октавный уровень звукового давления, эквивалентный помещению 10 м 2 (определяется по диаграмме);


 K_{oct} - поправочный коэффициент.

	Попра	Поправочный коэффициент К _{ост} , дБ										
Тип клапана	63	125	250	500	1000	2000	4000	8000				
IRD 100	25	21	16	9	4	-6	-12	-25				
IRD 125	17	17	13	7	1	-4	-6	-17				
IRD 160	19	18	14	6	-1	-6	-13	-25				
IRD 200	20	17	12	5	-2	-5	-14	-26				
IRD 250	16	12	8	3	1	-4	-17	-32				
IRD 315	24	12	5	0	1	-2	-13	-27				
IRD 400	15	9	6	2	-1	-4	-9	-13				
IRD 500	14	7	4	1	-1	-4	-8	-11				
IRD 630	15	7	3	2	-1	-5	-9	-11				
IRD 800	9	5	3	3	-1	-6	-10	-13				
Допуск	± 6	± 3	± 2	± 2	± 2	± 2	± 2	± 3				

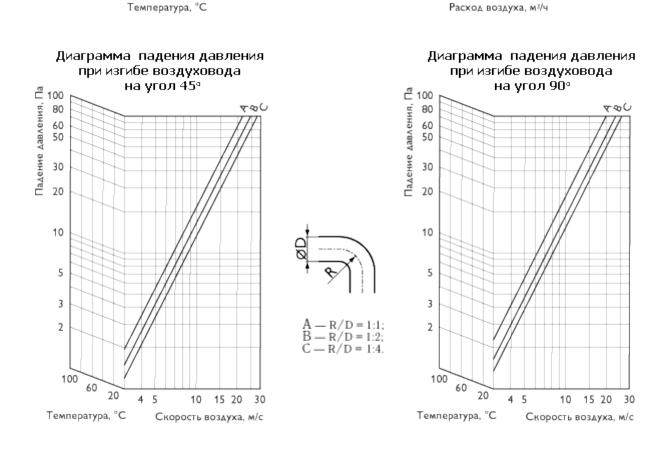
Обратные клапаны RSK



Обратные клапаны RSK предназначены для автоматического перекрывания круглых воздуховодов при выключении вентилятора. Корпус клапана выполнен из оцинкованной стали, лопасти изготовлены из листового алюминия. Конструкция корпуса клапана позволяет крепить его к воздуховодам или другим элементам системы вентиляции с помощью хомутов. Клапан может быть установлен в любом положении, обеспечивающем при закрытии клапана плотное прилегание лопастей к корпусу.

Размеры, мм

Тип клапана	ØA	D	В	С
RSK 100	100	90	45	40
RSK 125	125	90	45	40
RSK 160	160	90	45	40
RSK 200	200	90	45	40
RSK 250	250	125	65	60
RSK 315	315	130	65	65
RSK 355	355	140	65	63
RSK 400	400	140	65	63
RSK 500	500	140	65	63
RSK 630	630	140	65	63



Воздуховоды ALUDUCT

Гибкие неизолированные воздуховоды. Изготавливаются ламинированием пяти слоев алюминиевой фольги и полиэфира с витками высокопрочной стальной проволоки между слоями. Воздуховоды ALUDUCT легко соединяются с каналами круглого и овального сечения. Они эффективно используются в системах кондиционирования и вентиляции с низким и средним давлением. Рабочая температура от 30° до $+140^{\circ}$ С, максимальное давление 2500 Па, максимальная скорость потока 30 м/с. Стандартная длина воздуховода в одной упаковке составляет 10 м.

Воздуховоды ISODUCT

Гибкие теплоизолированные воздуховоды предназначены для систем вентиляции и кондиционирования воздуха с низким и средним давлением. Воздуховоды ISODUCT состоят из:

- 1) Стандартного воздуховода ALUDUCT,
- 2) 25 мм слоя теплоизоляции плотностью 16 кг/м3
- 3) Армированного наружного покрытия из многослойной алюминиевой фольги и полиэфира.

Они предназначены для систем вентиляции и кондиционирования воздуха с низким и средним давлением. Воздуховоды ISODUCT легко соединяются с

каналами круглого и овального сечения. Рабочая температура от 30° до +140° С, максимальное давление 2500 Па, максимальная скорость потока 30 м/с. Стандартная длина воздуховода в одной упаковке составляет 10 м.

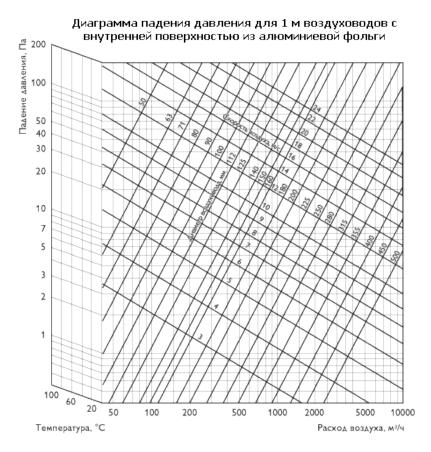
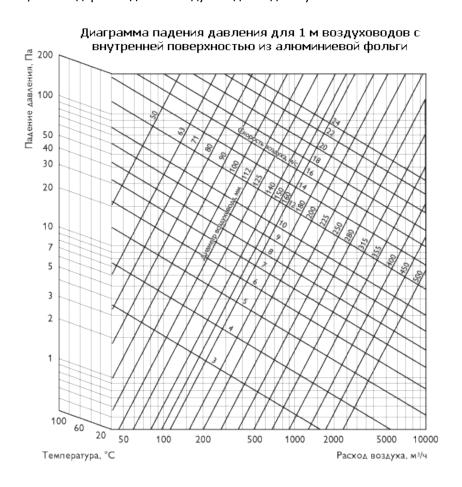
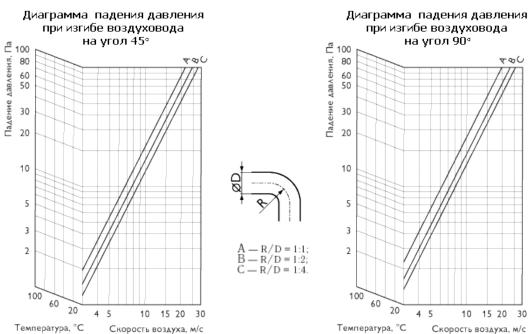


Диаграмма падения давления Диаграмма падения давления при изгибе воздуховода при изгибе воздуховода на угол 45° на угол 90° 100 80 давления, 60 50 30 20 10 10 5 5 3 2 R/D = 1:2; D/D = 1:4. 100 100 60 15 20 15 20 Температура, °С Температура, °С Скорость воздуха, м/с Скорость воздуха, м/с


Воздуховоды SONODUCT

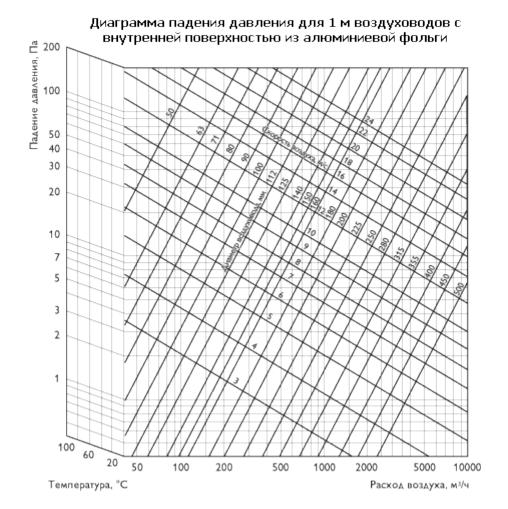


Гибкие звукопоглошающие теплоизолированные воздуховоды предназначены для систем вентиляции и кондиционирования воздуха с низким и средним давлением. Воздуховоды SONODUCT состоят из:

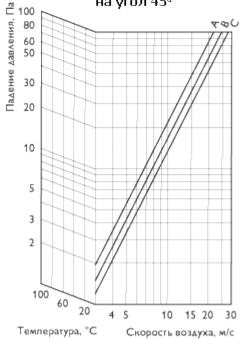
- 1) Микроперфорированного воздуховода ALUDUCT, обёрнутого полиэфирной плёнкой. Это предотвращает диффузию теплоизоляции
- 2) 25 мм слоя теплоизоляции, плотностью 16 кг/м3
- 3) Наружного покрытия из многослойной алюминиевой фольги и полиэфира с армированным усилением.

Воздуховоды SONODUCT легко соединяются с каналами круглого и овального сечения. Рабочая температура от 30° до $+140^{\circ}$ С, максимальное давление 2500 Па, максимальная скорость потока 30 м/с. Стандартная длина воздуховода в одной упаковке составляет 10 м.

Воздуховоды SILENCEDUCT



Гибкие, легко устанавливаемые шумоглушители, предназначенные для систем кондиционирования и вентиляции. SILENCEDUCT состоит из:


- 1) Микроперфорированного воздуховода ALUDUCT, обёрнутого полиэфирной плёнкой (это предотвращает диффузию теплоизоляции)
- 2) 25 мм слоя теплоизоляции, плотностью 16 кг/м3
- 3) Наружного покрытия из многослойной алюминиевой фольги, армированной спиральной проволокой.

Шумоглушители SILENCEDUCT легко соединяется с каналами круглого и овального сечения. Рабочая температура от 30° до +250° С, максимальное давление 3000 Па, максимальная скорость потока 25 м/с. Стандартная длина

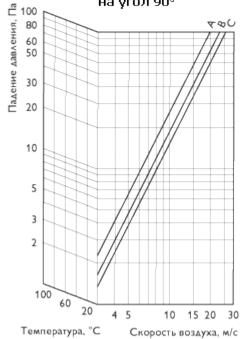
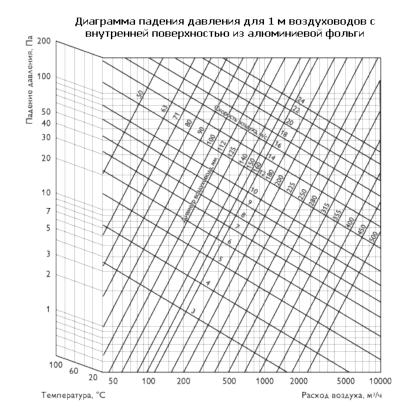
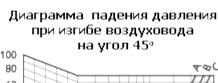
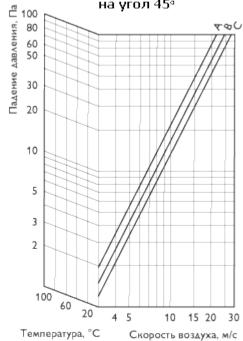

воздуховода в одной упаковке составляет 1 м.

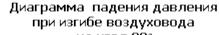
Диаграмма падения давления при изгибе воздуховода на угол 45°

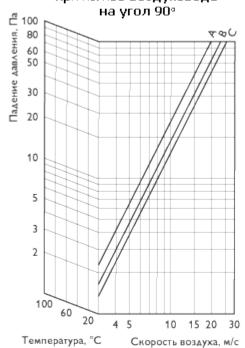
Диаграмма падения давления при изгибе воздуховода на угол 90°



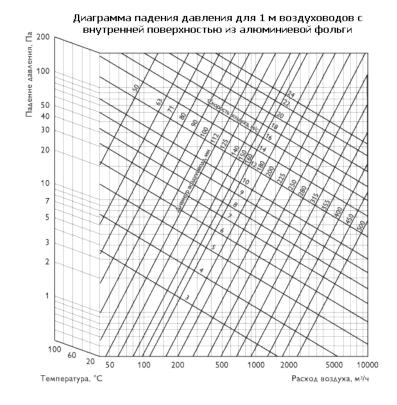

Воздуховоды ALU-light

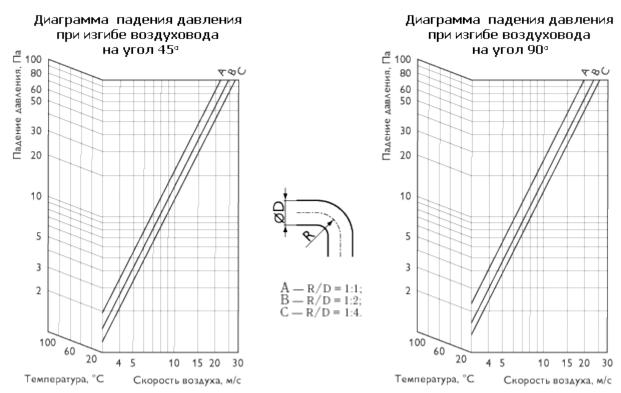



Гибкие неизолированные воздуховоды. Изготавливаются из многослойной полиэфирной металлизированной ленты с витками стальной проволоки между слоями. Воздуховоды ALUlight легко соединяются с каналами круглого и овального сечения. Они эффективно используются в системах кондиционирования и вентиляции с низким и средним давлением. Рабочая температура от 30° до +80° С, максимальное давление 800 Па, максимальная скорость потока 30 м/с. Стандартная длина воздуховода в одной упаковке составляет 10 м.


- R/D = 1:2; - R/D = 1:4.

Воздуховоды SONO-light

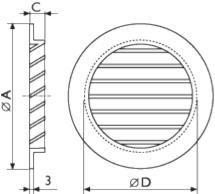

Гибкие звукопоглошающие теплоизолированные воздуховоды предназначены для систем вентиляции и кондиционирования воздуха с низким и средним давлением. Воздуховоды SONOlight состоят из:


- 1) Микроперфорированного воздуховода ALUlight, обёрнутого полиэфирной плёнкой. Это предотвращает диффузию теплоизоляции
- 2) 25 мм слоя теплоизоляции, плотностью 16 кг/м3

-R/D = 1:2;R/D = 1:4

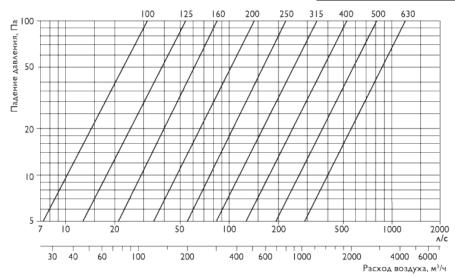
3) Наружного покрытия из многослойной алюминиевой фольги и металлизированной ленты с армированным усилением.

Воздуховоды SONOlight легко соединяются с каналами круглого и овального сечения. Рабочая температура от 30° до +80° C, максимальное давление 800 Па, максимальная скорость потока 30 м/с. Стандартная длина воздуховода в одной упаковке составляет 10 м.



Наружные решетки **CG**

Наружные решётки СG предназначены для забора свежего воздуха и удаления загрязнённого воздуха из зданий.


Решётки СG представляют собой круглую раму с установленными в неё неподвижными жалюзи, форма которых препятствует проникновению атмосферных осадков с улицы. С внутренней стороны решетки установлена защитная сетка.

Решётки изготавливаются из алюминия.



Размеры, мм

Модель	øD	øΑ	С	Вес, кг
CG 100	99	132	25	0,17
CG 125	124	152	25	0,24
CG 160	159	189	25	0,41
CG 200	199	231	25	0,49
CG 250	249	278	28	0,74
CG 315	314	350	23	1,94
CG 400	399	400	25	2,90

Алюминиевые клеящие ленты ATS/ATR

Алюминиевые клеящие ленты ATS/ATR предназначены для крепления и герметизации гибких воздуховодов систем вентиляции и кондиционирования. Они представляют собой алюминиевую основу, покрытую клеевым герметизирующим слоем. Лента поставляется в рулонах. Для получения качественного соединения ленту следует накладывать на очищенную от пыли и обезжиренную поверхность.

Технические характеристики

Модель	Размеры, длина × ширина × толщина, м × мм × мкм	Максимальное давление, Па	Структура
ATS 50	45 x 50 x 30	1000	A
ATS 75	45 x 75 x 30	1000	Алюминиевая фольга и клеевой слой
ATR 50	45 x 50 x 50	1000	Алюминиевая фольга, армированная
ATR 75	45 x 75 x 50	1000	стекловолокном и клеевой слой

Лента для хомутов UNIBAND и зажимы UNIBLOK



Многоцелевая система хомутов Uniband—Uniblok предназначена для быстрого и надёжного соединения гибких воздуховодов с элементами вентиляционных систем, которая позволяет получить хомут нужного диаметра. Система состоит из 30 метров ленты Uniband и 50 зажимов Uniblok. На ленту Uniband нанесена шаговая маркировка, что позволяет отрезать точное количество ленты.

Монтажные хомуты NC и клещи Quick-Clamp

Монтажные хомуты NC - это эффективная альтернатива металлическим хомутам для соединения гибких воздуховодов с элементами вентиляционных систем. Хомуты NC изготавливаются из нейлона, специально разработанного для систем OBK. Они выдерживают усилие на растяжение свыше 75 кг. Хомуты NC обладают самоконтрящимся замком и используются для воздуховодов диаметром от 10 до 229 мм. Для больших диаметров необходимо соединить два или более хомутов. Хомуты могут использоваться при температуре от 40 до 85°C. Для быстрой и удобной работы с хомутами рекомендуется использовать монтажные клещи QuickClamp, которые затягивают и обрезают хомуты. Клещи QuickClamp просты в эксплуатации, обеспечивают быстрое и надёжное соединение.

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Эл. почта: pba@nt-rt.ru || Сайт: http://polarbear.nt-rt.ru